1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Electroencephalogram" 41 results
        • Automated detection of sleep-arousal using multi-scale convolution and self-attention mechanism

          In clinical, manually scoring by technician is the major method for sleep arousal detection. This method is time-consuming and subjective. This study aimed to achieve an end-to-end sleep-arousal events detection by constructing a convolutional neural network based on multi-scale convolutional layers and self-attention mechanism, and using 1 min single-channel electroencephalogram (EEG) signals as its input. Compared with the performance of the baseline model, the results of the proposed method showed that the mean area under the precision-recall curve and area under the receiver operating characteristic were both improved by 7%. Furthermore, we also compared the effects of single modality and multi-modality on the performance of the proposed model. The results revealed the power of single-channel EEG signals in automatic sleep arousal detection. However, the simple combination of multi-modality signals may be counterproductive to the improvement of model performance. Finally, we also explored the scalability of the proposed model and transferred the model into the automated sleep staging task in the same dataset. The average accuracy of 73% also suggested the power of the proposed method in task transferring. This study provides a potential solution for the development of portable sleep monitoring and paves a way for the automatic sleep data analysis using the transfer learning method.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • A method of mental disorder recognition based on visibility graph

          The causes of mental disorders are complex, and early recognition and early intervention are recognized as effective way to avoid irreversible brain damage over time. The existing computer-aided recognition methods mostly focus on multimodal data fusion, ignoring the asynchronous acquisition problem of multimodal data. For this reason, this paper proposes a framework of mental disorder recognition based on visibility graph (VG) to solve the problem of asynchronous data acquisition. First, time series electroencephalograms (EEG) data are mapped to spatial visibility graph. Then, an improved auto regressive model is used to accurately calculate the temporal EEG data features, and reasonably select the spatial metric features by analyzing the spatiotemporal mapping relationship. Finally, on the basis of spatiotemporal information complementarity, different contribution coefficients are assigned to each spatiotemporal feature and to explore the maximum potential of feature so as to make decisions. The results of controlled experiments show that the method in this paper can effectively improve the recognition accuracy of mental disorders. Taking Alzheimer's disease and depression as examples, the highest recognition rates are 93.73% and 90.35%, respectively. In summary, the results of this paper provide an effective computer-aided tool for rapid clinical diagnosis of mental disorders.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • Clinical characteristics and prognostic factors of 33 children with status epilepticus

          Purpose To analyze the clinical characteristicsand prognostic factors of Status epilepticus (SE) in children. Methods The clinical data of 33 children with SE treated in Jinan Central Hospital Affiliated of Shandong University from January 2014 to June 2021 were collected, and their clinical characteristics were analyzed. Then, according to Glasgow prognosis scale, the children were divided into good prognosis group (n=20) and poor prognosis group (n=13). The age of first attack, duration of attack, type of attack and SE classification, EEG, cranial imaging and etiology were used to analyze the influencing factors of SE prognosis. Results 75.7% were 0 ~ 6 years old in the age of first attack, and 29 cases of convulsive status epilepticus accounted for 87.9% in the classification of seizure types. There were significant differences in age of first attack, duration of attack, EEG, history of mental retardation and etiology between the two groups (P<0.05); Logistic regression analysis showed that the age of first attack, duration of attack, history of mental retardation and EEG were independent factors affecting the prognosis. Conclusion Low age, especially ≤ 6 years old, is the high incidence of SE in children at first attack. Most children are symptomatic and have obvious incentives. Convulsive SE is the main type of SE in children. The age of first onset, duration of epilepsy, history of mental retardation, and EEG can affect the prognosis of SE.

          Release date:2022-02-24 02:04 Export PDF Favorites Scan
        • Clinical and electroencephalogram features of dyssynergia cerebellaris myoclonica

          ObjectiveWe report two family and one sporadic case with dyssynergia cerebellaris myoclonica, investigate the clinical and neural electrophysiological features. MethodsThe proband and sporadic patient was examined by clinical, neuroimaging, video-EEG and synchronous electromyography. ResultsThere were 6 patients with dyssynergia cerebellaris myoclonica of the 27 family members in the first family(3 male and 3 female). There were 4 patients with dyssynergia cerebellaris myoclonica of the 20 family members in the second family(2 male and 2 female). All patiens had disproportionately myoclonus, epilepsy and progressive cerebellar ataxia. EEG showed bursts of spike-slow wave, polyspilke-slow wave distributing in the bilateral brain both in ictal and interictal period, sometimes it is especially in central, parietal and frontal area. EEG showed bursts of spike-slow wave, polyspilke-slow wave distributing in the central, parietal and frontal area in interictal period. Pathology of the skin and muscles are normal. ConclusionThe diagnosis of dyssynergia cerebellaris myoclonica was mainly based on typical clinical manifestations, brain MRI and EEG changes.Long time video EEG and synchronous EMG is important for the diagnosis. Skin and muscles pathology can be normal.

          Release date:2016-10-02 06:51 Export PDF Favorites Scan
        • A review on electroencephalogram based channel selection

          The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.

          Release date:2024-04-24 09:50 Export PDF Favorites Scan
        • Neural mechanisms of fear responses to emotional stimuli: a preliminary study combining early posterior negativity and electroencephalogram source network analysis

          Fear emotion is a typical negative emotion that is commonly present in daily life and significantly influences human behavior. A deeper understanding of the mechanisms underlying negative emotions contributes to the improvement of diagnosing and treating disorders related to negative emotions. However, the neural mechanisms of the brain when faced with fearful emotional stimuli remain unclear. To this end, this study further combined electroencephalogram (EEG) source analysis and cortical brain network construction based on early posterior negativity (EPN) analysis to explore the differences in brain information processing mechanisms under fearful and neutral emotional picture stimuli from a spatiotemporal perspective. The results revealed that neutral emotional stimuli could elicit higher EPN amplitudes compared to fearful stimuli. Further source analysis of EEG data containing EPN components revealed significant differences in brain cortical activation areas between fearful and neutral emotional stimuli. Subsequently, more functional connections were observed in the brain network in the alpha frequency band for fearful emotions compared to neutral emotions. By quantifying brain network properties, we found that the average node degree and average clustering coefficient under fearful emotional stimuli were significantly larger compared to neutral emotions. These results indicate that combining EPN analysis with EEG source component and brain network analysis helps to explore brain functional modulation in the processing of fearful emotions with higher spatiotemporal resolution, providing a new perspective on the neural mechanisms of negative emotions.

          Release date:2024-10-22 02:39 Export PDF Favorites Scan
        • Discussion on the distribution characteristics and preventive effects of EEG patterns in acute mountain sickness

          ObjectiveThe purpose of the research is to study the distribution and early warning of electroencephalogram (EEG) in acute mountain sickness (AMS). MethodsA total of 280 healthy young men were recruited from September 2016 to October 2016. The basic data were collected by the centralized flow method, the general situation of the division of the investigators after the training, the Lewis Lake score, the computer self-rating anxiety scale and depression scale, and the collection of EEG. Follow up in three months. Results94 of the patients with AMS, morbidity is 33%, 21 (22.34%) of the patients are moderate to severe, 73 (77.66%) are mild, morbidity is 26.67%. The abnormal detection rate of electrogram was 7.9% (22/280), which were mild EEG, normal EEG abnormal rate was 8.6% (16/186), abnormal detection rate of mild AMS was 4.1% (3/73), and the abnormal detection rate was 14.3% (3/21) in the medium / heavy AMS. The latter was significantly different from the previous (P < 0.05). Three months follow-up of this group of patients with 0 case of high altitude disease. Conclusions The EEG in AMS is mainly a rhythm irregular, unstable, poor amplitude modulation; or two hemisphere volatility difference of more than 50% or slightly increased activity. The result is statistically significant, suggesting that EEG distributions has possible early warning of AMS.

          Release date:2017-07-26 04:06 Export PDF Favorites Scan
        • Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films

          There are two modes to display panoramic movies in virtual reality (VR) environment: non-stereoscopic mode (2D) and stereoscopic mode (3D). It has not been fully studied whether there are differences in the activation effect between these two continuous display modes on emotional arousal and what characteristics of the related neural activity are. In this paper, we designed a cognitive psychology experiment in order to compare the effects of VR-2D and VR-3D on emotional arousal by analyzing synchronously collected scalp electroencephalogram signals. We used support vector machine (SVM) to verify the neurophysiological differences between the two modes in VR environment. The results showed that compared with VR-2D films, VR-3D films evoked significantly higher electroencephalogram (EEG) power (mainly reflected in α and β activities). The significantly improved β wave power in VR-3D mode showed that 3D vision brought more intense cortical activity, which might lead to higher arousal. At the same time, the more intense α activity in the occipital region of the brain also suggested that VR-3D films might cause higher visual fatigue. By the means of neurocinematics, this paper demonstrates that EEG activity can well reflect the effects of different vision modes on the characteristics of the viewers’ neural activities. The current study provides theoretical support not only for the future exploration of the image language under the VR perspective, but for future VR film shooting methods and human emotion research.

          Release date:2022-04-24 01:17 Export PDF Favorites Scan
        • The current applicating state of neural network-based electroencephalogram diagnosis of Alzheimer’s disease

          The electroencephalogram (EEG) signal is a general reflection of the neurophysiological activity of the brain, which has the advantages of being safe, efficient, real-time and dynamic. With the development and advancement of machine learning research, automatic diagnosis of Alzheimer’s diseases based on deep learning is becoming a research hotspot. Started from feedforward neural networks, this paper compared and analysed the structural properties of neural network models such as recurrent neural networks, convolutional neural networks and deep belief networks and their performance in the diagnosis of Alzheimer’s disease. It also discussed the possible challenges and research trends of this research in the future, expecting to provide a valuable reference for the clinical application of neural networks in the EEG diagnosis of Alzheimer’s disease.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • A study on electroencephalogram characteristics of depression in patients with aphasia based on resting state and emotional Stroop task

          Post-stroke aphasia is associated with a significantly elevated risk of depression, yet the underlying mechanisms remain unclear. This study recorded 64-channel electroencephalogram data and depression scale scores from 12 aphasic patients with depression, 8 aphasic patients without depression, and 12 healthy controls during resting state and an emotional Stroop task. Spectral and microstate analyses were conducted to examine brain activity patterns across conditions. Results showed that depression scores significantly negatively explained the occurrence of microstate class C and positively explained the transition probability from microstate class A to B. Furthermore, aphasic patients with depression exhibited increased alpha-band activation in the frontal region. These findings suggest distinct neural features in aphasic patients with depression and offer new insights into the mechanisms contributing to their heightened vulnerability to depression.

          Release date:2025-06-23 04:09 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品