1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "functional network" 12 results
        • Research on classification of brain functional network features during mental fatigue

          This study is aimed to investigate objective indicators of mental fatigue evaluation to improve the accuracy of mental fatigue evaluation. Mental fatigue was induced by a sustained cognitive task. The brain functional networks in two states (normal state and mental fatigue state) were constructed based on electroencephalogram (EEG) data. This study used complex network theory to calculate and analyze nodal characteristics parameters (degree, betweenness centrality, clustering coefficient and average path length of node), and served them as the classification features of support vector machine (SVM). Parameters of the SVM model were optimized by gird search based on 6-fold cross validation. Then, the subjects were classified. The results show that characteristic parameters of node of brain function networks can be divided into normal state and mental fatigue state, which can be used in the objective evaluation of mental fatigue state.

          Release date:2018-04-16 09:57 Export PDF Favorites Scan
        • Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm

          The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.

          Release date:2020-12-14 05:08 Export PDF Favorites Scan
        • Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging

          How to extract high discriminative features that help classification from complex resting-state fMRI (rs-fMRI) data is the key to improving the accuracy of brain disease recognition such as schizophrenia. In this work, we use a weighted sparse model for brain network construction, and utilize the Kendall correlation coefficient (KCC) to extract the discriminative connectivity features for schizophrenia classification, which is conducted with the linear support vector machine. Experimental results based on the rs-fMRI of 57 schizophrenia patients and 64 healthy controls show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 81.82%) than other competing methods. Specifically, compared with the traditional network construction methods (Pearson’s correlation and sparse representation) and the commonly used feature selection methods (two-sample t-test and Least absolute shrinkage and selection operator (Lasso)), the algorithm proposed in this paper can more effectively extract the discriminative connectivity features between the schizophrenia patients and the healthy controls, and further improve the classification accuracy. At the same time, the discriminative connectivity features extracted in the work could be used as the potential clinical biomarkers to assist the identification of schizophrenia.

          Release date:2020-10-20 05:56 Export PDF Favorites Scan
        • Advances in migraine without aura based on resting-state functional MRI

          Migraine is the most common primary headache clinically, with high disability rate and heavy burden. Functional MRI (fMRI) plays a significant role in the study of migraine. This article reviews the main advances of migraine without aura (MwoA) based on resting-state fMRI in recent years, including the exploration of the mechanism of fMRI in the occurrence and development of MwoA in terms of regional functional activities and functional network connections, as well as the research progress of the potential clinical application of fMRI in aiding diagnosis and assessing treatment effect for MwoA. At last, this article summarizes the current distresses and prospects of fMRI research on MwoA.

          Release date:2024-06-24 02:56 Export PDF Favorites Scan
        • Construction and analysis of muscle functional network for exoskeleton robot

          Exoskeleton nursing robot is a typical human-machine co-drive system. To full play the subjective control and action orientation of human, it is necessary to comprehensively analyze exoskeleton wearer’s surface electromyography (EMG) in the process of moving patients, especially identifying the spatial distribution and internal relationship of the EMG information. Aiming at the location of electrodes and internal relation between EMG channels, the complex muscle system at the upper limb was abstracted as a muscle functional network. Firstly, the correlation characteristics were analyzed among EMG channels of the upper limb using the mutual information method, so that the muscle function network was established. Secondly, by calculating the characteristic index of network node, the features of muscle function network were analyzed for different movements. Finally, the node contraction method was applied to determine the key muscle group that reflected the intention of wearer’s movement, and the characteristics of muscle function network were analyzed in each stage of moving patients. Experimental results showed that the location of the myoelectric collection could be determined quickly and efficiently, and also various stages of the moving process could effectively be distinguished using the muscle functional network with the key muscle groups. This study provides new ideas and methods to decode the relationship between neural controls of upper limb and physical motion.

          Release date:2019-08-12 02:37 Export PDF Favorites Scan
        • Biomarker extraction of sustained attention based on brain functional network

          Although attention plays an important role in cognitive and perception, there is no simple way to measure one's attention abilities. We identified that the strength of brain functional network in sustained attention task can be used as the physiological indicator to predict behavioral performance. Behavioral and electroencephalogram (EEG) data from 14 subjects during three force control tasks were collected in this paper. The reciprocal of the product of force tolerance and variance were used to calculate the score of behavioral performance. EEG data were used to construct brain network connectivity by wavelet coherence method and then correlation analysis between each edge in connectivity matrices and behavioral score was performed. The linear regression model combined those with significantly correlated network connections into physiological indicator to predict participant's performance on three force control tasks, all of which had correlation coefficients greater than 0.7. These results indicate that brain functional network strength can provide a widely applicable biomarker for sustained attention tasks.

          Release date:2018-04-16 09:57 Export PDF Favorites Scan
        • Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal

          An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8–13 Hz), beta frequency band (14–30 Hz) and gamma frequency band (31–60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.

          Release date:2023-10-20 04:48 Export PDF Favorites Scan
        • Research progress and application of transfer entropy algorithm

          In recent years, exploring the physiological and pathological mechanisms of brain functional integration from the neural network level has become one of the focuses of neuroscience research. Due to the non-stationary and nonlinear characteristics of neural signals, its linear characteristics are not sufficient to fully explain the potential neurophysiological activity mechanism in the implementation of complex brain functions. In order to overcome the limitation that the linear algorithm cannot effectively analyze the nonlinear characteristics of signals, researchers proposed the transfer entropy (TE) algorithm. In recent years, with the introduction of the concept of brain functional network, TE has been continuously optimized as a powerful tool for nonlinear time series multivariate analysis. This paper first introduces the principle of TE algorithm and the research progress of related improved algorithms, discusses and compares their respective characteristics, and then summarizes the application of TE algorithm in the field of electrophysiological signal analysis. Finally, combined with the research progress in recent years, the existing problems of TE are discussed, and the future development direction is prospected.

          Release date:2022-08-22 03:12 Export PDF Favorites Scan
        • Research on the influence of mixed emotional factors on false memory based on brain functional network

          Analyzing the influence of mixed emotional factors on false memory through brain function network is helpful to further explore the nature of brain memory. In this study, Deese-Roediger-Mc-Dermott (DRM) paradigm electroencephalogram (EEG) experiment was designed with mixed emotional memory materials, and different kinds of music were used to induce positive, calm and negative emotions of three groups of subjects. For the obtained false memory EEG signals, standardized low resolution brain electromagnetic tomography algorithm (sLORETA) was applied in the source localization, and then the functional network of cerebral cortex was built and analyzed. The results show that the positive group has the most false memories [(83.3 ± 6.8)%], the prefrontal lobe and left temporal lobe are activated, and the degree of activation and the density of brain network are significantly larger than those of the calm group and the negative group. In the calm group, the posterior prefrontal lobe and temporal lobe are activated, and the collectivization degree and the information transmission rate of brain network are larger than those of the positive and negative groups. The negative group has the least false memories [(73.3 ± 2.2)%], and the prefrontal lobe and right temporal lobe are activated. The brain network is the sparsest in the negative group, the degree of centralization is significantly larger than that of the calm group, but the collectivization degree and the information transmission rate of brain network are smaller than the positive group. The results show that the brain is stimulated by positive emotions, so more brain resources are used to memorize and associate words, which increases false memory. The activity of the brain is inhibited by negative emotions, which hinders the brain’s memory and association of words and reduces false memory.

          Release date:2021-12-24 04:01 Export PDF Favorites Scan
        • Effect of electroconvulsive therapy on brain functional network in major depressive disorder

          Electroconvulsive therapy (ECT) is an interventional technique capable of highly effective neuromodulation in major depressive disorder (MDD), but its antidepressant mechanism remains unclear. By recording the resting-state electroencephalogram (RS-EEG) of 19 MDD patients before and after ECT, we analyzed the modulation effect of ECT on the resting-state brain functional network of MDD patients from multiple perspectives: estimating spontaneous EEG activity power spectral density (PSD) using Welch algorithm; constructing brain functional network based on imaginary part coherence (iCoh) and calculate functional connectivity; using minimum spanning tree theory to explore the topological characteristics of brain functional network. The results show that PSD, functional connectivity, and topology in multiple frequency bands were significantly changed after ECT in MDD patients. The results of this study reveal that ECT changes the brain activity of MDD patients, which provides an important reference in the clinical treatment and mechanism analysis of MDD.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品