Thoracolumbar fractures are common injuries. Accurate diagnosis and classification are of great significance for guiding treatment. Although there are many classification systems, they have not been universally accepted and used to guide clinical practice. Denis classification, load sharing classification, Magerl/AO classification, and Thoracolumbar Injury Classification and Severity Score have a great clinical influence, but they also have some shortcomings. Recently, some new classifications of thoracolumbar fractures have been proposed, and some of them have been updated and revised, which makes it easy to cause confusion, and puts forward new requirements on how to grasp and apply these classification systems. This article reviews the main and commonly used classification systems of thoracolumbar fractures, discusses the main viewpoints, advantages and disadvantages of each classification system, and looks ahead to the future research direction.
Objective To review current status of surgical treatment for angular kyphosis in spinal tuberculosis and provide reference for clinical treatment. Methods The literature on the surgical treatment for angular kyphosis of spinal tuberculosis in recent years was extensively reviewed and summarized from the aspects of surgical indications, surgical contraindications, surgical approach, selection of osteotomy, and perioperative management. Results Angular kyphosis of spine is a common complication in patients with spinal tuberculosis. If kyphosis progresses gradually, it is easy to cause neurological damage, deterioration, and delayed paralysis, which requires surgical intervention. At present, surgical approaches for angular kyphosis of the spine include anterior approach, posterior approach, and combined anterior and posterior approaches. Anterior approach can be performed for patients with severe spinal cord compression and small kyphotic Cobb angle. Posterior approach can be used for patients with large kyphotic Cobb angle but not serious neurological impairment. A combined anterior and posterior approaches is an option for spinal canal decompression and orthosis. Osteotomy for kyphotic deformity include Smith-Peterson osteotomy (SPO), pedicle subtraction osteotomy (PSO), vertebral column resection(VCR), vertebral column decancellation (VCD), posterior vertebral column resection (PVCR), deformed complex vertebral osteotomy (DCVO), and Y-shaped osteotomy. SPO and PSO are osteotomy methods with relatively low surgical difficulty and low surgical risks, and can provide 15°-30° angular kyphosis correction effect. VCR or PVCR is a representative method of osteotomy and correction. The kyphosis correction can reach 50° and is suitable for patients with severe angular kyphosis. VCD, DCVO, and Y-shaped osteotomy are emerging surgical techniques in recent years. Compared with VCR, the surgical risks are lower and the treatment effects also improve to varying degrees. Postoperative recovery is also a very important part of the perioperative period and should be taken seriously. Conclusion There is no consensus on the choice of surgical treatment for angular kyphosis in spinal tuberculosis. Osteotomy surgery are invasive, which is a problem that colleagues have always been concerned about. It is best to choose a surgical method with less trauma while ensuring the effectiveness.
ObjectiveTo evaluate the short-term effectiveness of percutaneous endoscopic lumbar discectomy (PELD) in treatment of buttock pain associated with lumbar disc herniation.MethodsBetween June 2015 and May 2016, 36 patients with buttock pain associated with lumbar disc herniation were treated with PELD. Of 36 cases, 26 were male and 10 were female, aged from 18 to 76 years (mean, 35.6 years). The disease duration ranged from 3 months to 10 years (mean, 14 months). The location of the pain was buttock in 2 cases, buttock and thigh in 6 cases, buttock and the ipsilateral lower extremity in 28 cases. Thirty-four patients had single-level lumbar disc herniation, and the involved segments were L4, 5 in 15 cases and L5, S1 in 19 cases; 2 cases had lumbar disc herniation at both L4, 5 and L5, S1. The preoperative visual analogue scale (VAS) score of buttock pain was 6.1±1.3. VAS score was used to evaluate the degree of buttock pain at 1 month, 3 months, 6 months, and last follow-up postoperatively. The clinical outcome was assessed by the modified MacNab criteria at last follow-up.ResultsAll patients were successfully operated and the operation time was 27-91 minutes (mean, 51 minutes). There was no nerve root injury, dural tear, hematoma formation, or other serious complications. The hospitalization time was 3-8 days (mean, 5.3 days). All incisions healed well and no infection occurred. Patients were followed up 12-24 months (median, 16 months). MRI examination results showed that the dural sac and nerve root compression were sufficiently relieved at 3 months after operation. Patients obtained pain relief after operation. The postoperative VAS scores of buttock pain at 1 month, 3 months, 6 months, and last follow-up were 1.1±0.6, 0.9±0.3, 1.0±0.3, and 0.9±0.4 respectively, showing significant differences when compared with preoperative VAS scores (P<0.05); there was no significant difference in VAS score between the different time points after operation (P>0.05). At last follow-up, according to the modifed MacNab criteria, the results were excellent in 27 cases, good in 9 cases, and fair in 2 cases, and the excellent and good rate was 94.4%.ConclusionPELD can achieve satisfactory short-term results in the treatment of buttock pain associated with lumbar disc herniation and it is a safe and effective minimally invasive surgical technique.
Traditional bone repair materials, such as titanium, polyetheretherketone, and calcium phosphate, exhibit limitations, including poor biocompatibility and incongruent mechanical properties. In contrast, ceramic-polymer composite materials combine the robust mechanical strength of ceramics with the flexibility of polymers, resulting in enhanced biocompatibility and mechanical performance. In recent years, researchers worldwide have conducted extensive studies to develop innovative composite materials and manufacturing processes, with the aim of enhancing the bone repair capabilities of implants. This article provides a comprehensive overview of the advancements in ceramic-polymer composite materials, as well as in 3D printing and surface modification techniques for composite materials, with the objective of offering valuable insights to improve and facilitate the clinical application of ceramic-polymer composite materials in the future.
Objective To evaluate the safety and efficacy of the operation performed under the video-assisted thoracoscope to release the anterior part of the spine of the patient with severe adolescent idiopathic scoliosis (AIS). Methods From April 2004 to July 2006, 24 patients with AIS (Illness course, 1.5-9 years; Lenke Ⅰ in 17 patients, Lenke Ⅱ in 7; right scoliosis in 22, left scoliosis in 2), among whom there were 9 males and 15 females, with an average age of 14.7 years (range, 11-21 years) at the time of the operation. Before operation, the thoracic vertebral Cobb anger at the coronal plane was averaged 78.3°(range, 65-125°). All the patients had normal muscle strength and muscle tension in their lower limbs, but 5 of the patients had a decrease of the superficial sensation in their lower limbs. All the patients had a moderately or severely decreased lung reserve function. Under general anesthesia, the patient was placed in the lateral position to set up a work channel for thoracoscopy. The releasing of the thoracic intervertebral space and the confluence of the bone grafts were performed. During Stage Ⅰ or Stage Ⅱ, the orthopedic procedures for the posterior part of the scoliosis spine, the internal fixation, and the confluence ofthe bone grafts were completed. ResultsAll the patients survived the periodof perioperation. During operation, there was a hemorrhage of 50-200 ml, averaged 100 ml, with a postoperative thoracic closely-drained fluid of 100-150 ml. The incision was healed by the first intention. Each patient underwent the releaseof 4-6 intervertebral spaces, with an average of 5.5 spaces released. The average coronal Cobb angle was 45.6°(range, 25-75°). The physiological curvatureat the sagittal plane was normal, with an improved shape of the spine. The follow-up for 3-18 months averaged 9.3 months revealed that the bilateral pulmonary markings were clear, with confluence of the orthopedic segment of the spine. The patients could live and work normally, and had a significantly-improved psychological condition and an active social participation because of their improved appearance. Conclusion The releasing of the anterior part of the spine under the video-assisted thoracoscope can effectively release the adolescent idiopathic scoliosis and improve the flexibility of the spine, with a smaller degree of the surgical wound and a faster and clearer exposure of the spinal column during operation.
Congenital scoliosis is the presence of a sideways curvature of the spine caused by the failure of normal vertebral development. Congenital scoliosis is usually progressive, and surgical treatment is crucial for the treatment of congenital scoliosis. Surgical treatments of congenital scoliosis mainly include simple fusion surgery, hemivertebrae excision, growing rods technique, and vertical expandable prosthetic titanium rib. However, there is no uniform standard for the selection of surgical techniques and surgical timing. This article reviews the progress of different surgical treatments for congenital scoliosis, introduces the classification of congenital scoliosis, and clarifies the timing, pros and cons of different surgical techniques, aiming to provide a reference for the development of individualized optimal surgical plans for patients with congenital scoliosis.
Polyetheretherketone is one of the most commonly used materials for the production of orthopaedic implants, but the osseointegration capacity of polyetheretherketone is poor because of its bioinert surface, which greatly limits its clinical application. In recent years, scholars have carried out a lot of research on the modification of polyetheretherketone materials in order to improve its osseointegration capacity. At present, the modification of polyetheretherketone is mainly divided into surface modification and blend modification. Therefore, this paper summarizes the research progress of polyetheretherketone material modification technology and its influence on osseointegration from two aspects of surface modification and blend modification for polyetheretherketone materials used in the field of bone repair, so as to provide a reference for the improvement and transformation of polyetheretherketone materials for bone repair in the future.
Objective To summarize the advances in MRI-based bone quality scoring systems and their clinical applications. Methods A comprehensive literature review was conducted on recent studies related to the MRI-based bone quality scoring system, focusing on measurement methods, influencing factors, and clinical significance. Results Osteoporosis has a high incidence in China, significantly impacting patients’ quality of life and the postoperative outcomes of related orthopedic surgeries. Early identification of osteoporosis holds important clinical significance. In recent years, both domestic and international research has enriched the MRI-based bone quality scoring systems, which includes vertebral bone quality scoring, endplate bone quality scoring, and pedicle bone quality scoring. Compared to the “gold standard” of bone density measurement, dual-energy X-ray absorptiometry, the bone quality scoring systems demonstrate good efficacy in identifying abnormal bone mass and predicting postoperative complications, while being less influenced by degenerative changes in the lumbar spine, indicating its important clinical application value. ConclusionThe MRI-based bone quality scoring systems have good value in clinical applications. However, current studies are mostly retrospective cohort and case-control studies, which carry a risk of bias. The clinical application value needs further clarification through meta-analysis and large-scale prospective studies.
Objective To investigate the clinical effect of polylactic acid membrane in prevention of epidural scar and adhesion. Methods From July 1998 to April 2000, 62 patients with lumbar disc herniation were randomly assigned into two groups. All were treated surgically with discectomy by fenestration or laminectomy.One group were placed with a thin of polylactic acid membrane covering the interlaminar space(n=32). The thickness of the film was 0.1mm. The other group was blank control(n=30). After 2 weeks of operation, we observed the local and systemic reactions. After 6 months clinical symptoms were revaluated and the degrees of epidural scar and adhesion were determined by CT scans. Results After 2 weeks, we found no adverse systemic reactions in all patients. Wound healing was excellent. No abnormalities of hepatic and renal functions as well as blood for routine were found. Temperature after operation was normal. After 6 months, the curative effects were as follows in experimental group and in control group: excellent in 27 patients and in 24 patients, good in 4 patients and in 4 patients, fair in 1 patient and in 1 patient, and poor in 0 patient and in 1 patient, respectively. There are no significant difference between two groups. The CT scans showed no adhesion between the epidural scar and the dural sac in all patients of experimental group. There existed various extents of adhesion in control group. Conclusion The results demonstrate that the polylactic acidmembrane can effectively prevent the epidural scar adhesion with a good biocompatibility and no toxity. Its clinical application was promising.
ObjectiveTo review the advances in the application of tranexamic acid (TXA) in adolescent spinal corrective surgery.MethodsThe mechanism of action and pharmacokinetic, effectiveness, dosage, safety as well as methods of administration were comprehensively summarized by consulting domestic and overseas related literature about the application of TXA in adolescent spinal corrective surgery in recent years.ResultsTXA efficaciously reduce intraoperative blood loss, transfusion rate and volume, postoperative drainage volume in adolescent spinal corrective surgery. At present, the most common method of administration in adolescent spinal corrective surgery is that a loading dose is given intravenously before skin incision or induction of anesthesia, followed by a maintenance dose until the end of the surgery. The range of loading dose and maintenance dose is 10-100 mg/kg and 1-10 mg/(kg·h), respectively. No drug related adverse event has been reported in this range.ConclusionThe effectiveness and safety of TXA in adolescent spinal surgery have been basically confirmed. However, further studies are needed to determine the optimal dosage, method of administration as well as whether it could reduce blood loss after surgery.