ObjectiveTo investigate the lymphatic targeting of 5-fluorouracil (5-FU) carbon nanoparticles in rats. Methods5-FU concentration in lymphoid tissue of rats was determined by reversed phase high performance liquid chromatography after intraperitoneal injection of 5-FU carbon nanoparticle and 5-FU ordinary form (20 mg/kg body weight). Results5-FU concentration of lymphoid tissue in the 5-FU carbon nanoparticle group was higher than that in the 5-FU ordinary form group, and could sustain a longer time. Conclusion5-FU carbon nanoparticles injection can improve the drug concentration of target lymphatic organs, also has a good lymphatic targeting
Medical magnetic nanoparticles are nano-medical materials with superparamagnetism, which can be collected in the tumor tissue through blood circulation, and magnetic particle imaging technology can be used to visualize the concentration of magnetic nanoparticles in the living body to achieve the purpose of tumor imaging. Based on the nonlinear magnetization characteristics of magnetic particles and the frequency characteristics of their magnetization, a differential detection method for the third harmonic of magnetic particle detection signals is proposed. It was modeled and analyzed, to study the nonlinear magnetization response characteristics of magnetic particles under alternating field, and the spectral characteristics of magnetic particle signals. At the same time, the relationship between each harmonic and the amount of medical magnetic nanoparticle samples was studied. On this basis, a signal detection experimental system was built to analyze the spectral characteristics and power spectral density of the detected signal, and to study the relationship between the signal and the excitation frequency. The signal detection experiment was carried out by the above method. The experimental results showed that under the alternating excitation field, the medical magnetic nanoparticles would generate a spike signal higher than the background sensing signal, and the magnetic particle signal existed in the odd harmonics of the detected signal spectrum. And the spectral energy was concentrated at the third harmonic, that is, the third harmonic magnetic particle signal detection that meets the medical detection requirement could be realized. In addition, the relationship between each harmonic and the particle sample volume had a positive growth relationship, and the detected medical magnetic nanoparticle sample volume could be determined according to the relationship. At the same time, the selection of the excitation frequency was limited by the sensitivity of the system, and the detection peak of the third harmonic of the detection signal was reached at the excitation frequency of 1 kHz. It provides theoretical and technical support for the detection of medical magnetic nanoparticle imaging signals in magnetic particle imaging research.
Cholangiocarcinoma is a highly malignant tumor. It is not sensitive to radiotherapy and chemotherapy and has a poor prognosis. At present, there is no effective treatment. As a new method for treating cancer, magnetic fluid hyperthermia has been clinically applied to a variety of cancers in recent years. This article introduces it to the cholangiocarcinoma model and systematically studies the effect of magnetic fluid hyperthermia on cholangiocarcinoma. Starting from the theory of magnetic fluid heating, the electromagnetic and heat transfer models were constructed in the finite element simulation software COMSOL using the Pennes biological heat transfer equation. The Helmholtz coil was used as an alternating magnetic field generating device. The relationship between the magnetic fluid-related properties and the heating power was analyzed according to Rosensweig’s theory. After the multiphysics coupling simulation was performed, the electromagnetic field and thermal field distribution in the hyperthermia region were obtained. The results showed that the magnetic field distribution in the treatment area was uniform, and the thermal field distribution met the requirements of hyperthermia. After the magnetic fluid injection, the cholangiocarcinoma tissue warmed up rapidly, and the temperature of tumor tissues could reach above 42 °C, but the surrounding healthy tissues did not heat up significantly. At the same time, it was verified that the large blood vessels around the bile duct, the overflow of the magnetic fluid, and the eddy current heat had little effect on thermotherapy. The results of this article can provide a reference for the clinical application of magnetic fluid hyperthermia for cholangiocarcinoma.
ObjectiveTo explore the application value of carbon nanoparticles during radical operation of differentiated thyroid cancer (DTC).MethodsThe DTC patients underwent total thyroidectomy plus neck lymph node (area Ⅳ) dissection from September 2017 to September 2019 in this hospital were retrospectively collected, who were divided into observation group and control group according to using carbon nanoparticles or not during the operation. The operation related informations [operation time, intraoperative blood loss, total drainage volume on day 3 after operation, postoperative hospitalization time, number of lymph nodes dissection (area Ⅳ), lymph node metastasis rate, and rate of parathyroid glands resected by mistake during operation] and blood calcium (Ca2+) level and parathyroid hormone (PTH) level before and after (24 h and 1 month) operation were compared between the two groups.ResultsA total of 134 patients with DTC were collected, including 76 patients in the observation group and 58 patients in the control group. There were no significant differences in baseline data such as gender, age, etc. between the two groups (P>0.05). Although there were no significant differences in terms of operation time, intraoperative blood loss, total drainage volume on day 3 after operation, postoperative hospitalization time, lymph node metastasis rate between the two groups (P>0.05), the numbers of lymph node dissection and metastasis (area Ⅳ) were more and rate of parathyroid glands resected by mistake during operation was lower in the observation group as compared with the control group (P<0.05). On hour 24 after operation, the levels of Ca2+ and PTH in the observation group were higher than those in the control group (P<0.05). On month 1 after operation, the PTH level in the observation group was still higher than that in the control group (P<0.05), but there was no significant difference in Ca2+ level between the two groups (P>0.05). ConclusionCarbon nanoparticles can better protect the function of parathyroid gland during radical operation of DTC and clean neck lymph nodes more thoroughly.
Due to the good tumor-targeting and excellent biocompatibility, the drug-loading nanoparticles (NPs) has been widely applied in the diagnosis and treatment of cancer. However, after the NPs are recognized and internalized by cancer cells, the effects of NPs on cell migration behavior were unclear. In the present study, the self-assembly techniques (SAMs) was used to modify gold (Au) nanoparticles (Au NPs) with different chemical functional groups (CH3, OH, COOH and NH2) as model NPs. The dispersion of these groups in solution and the distribution in cells were studied by transmission electron microscope (TEM), respectively, and the proliferation was examined by MTT assay in vitro. The wound-healing and the Transwell assay were used to examine the effect of internalized Au-NPs on HepG2 cells migration. The results showed that different Au-NPs mainly distributed at the edge of the vesicle membrane and the gap between cells. The Au-NPs resulted in decreased cell viability in a concentration-depended manner. In addition, the results of wound-healing and Transwells assay indicated that the internalization of the NH2-NPs and OH-NPs would inhibit cell migration compared with those in the control group.
The study of viruses traditionally focused on their roles as infectious agents and as tools for understanding cell biology. Recently, however, with the development of structural biology, viruses have now been receiving particular attention in nanotechnology. By chemical methods or by gene modification, viruses have been functionalized as potential building blocks for several applications, such as drug/gene delivery vehicles, advanced vaccine vehicles, and special inorganic or organic nanomaterials. Here we highlight some of the recent progresses in the medical applications of viruses.
Objective To investigate the effect of local injection of curcumin-loaded mesoporous silica nanoparticles (Cur@MSN) on the repair and treatment of degenerative intervertebral disc tissue in rats, and provide a new strategy for the treatment of intervertebral disc degeneration. Methods Mesoporous silica nanoparticles (MSN) and Cur@MSN were prepared according to the method reported in the literature. Rat nucleus pulposus cells were co-cultured with curcumin and Cur@MSN, respectively, and the growth status and activity of cells in normal environment and inflammatory environment (adding lipopolysaccharide) were observed respectively. Twelve 8-week-old SD rats were randomly divided into 4 groups, including normal group, degeneration group, curcumin group, and Cur@MSN group, with 3 rats in each group. Acupuncture degeneration model was established in coccygeal intervertebral discs (Co7-8, Co8-9) of rats, and corresponding intervention were injected. Imaging, gross pathology, and histological examination were performed after 4 weeks, respectively, to observe the tissue structure and pathological changes of intervertebral discs. Results Under scanning electron microscope, Cur@MSN was spherical in shape, with groove-like pores on its surface. Particle size analysis showed that the particle size of MSN was concentrated in 120-160 nm, and that of Cur@MSN was distributed in 130-170 nm. Zeta potential analysis showed that the average Zeta potential of MSN, curcumin, and Cur@MSN was ?12.5, ?22.5 and ?13.5 mV, respectively. The entrapment efficiency of Cur@MSN was 20.4%, and the drug loading rate was 0.2%. Curcumin released by Cur@MSN in 12 h accounted for about 60% of the total drug dose, and curcumin released in 28 h accounted for about 70%. In cell experiment, there was no significant difference in cell proliferation absorbance among the groups in normal environment (P>0.05), but the cell proliferation absorbance in the Cur@MSN group on the 3rd and 5th day in inflammatory environment was significantly higher than that in the control group and the curcumin group (P<0.01). The percentage of disc height index and the Pfirrmann grade of the Cur@MSN group were better than those of the degeneration group and the curcumin group (P<0.01). The histological score of the Cur@MSN group was lower than that of the degeneration group and the curcumin group (P<0.01). Conclusions Cur@MSN can delay the degeneration process of rat coccygeal intervertebral disc, and has certain repair and treatment effects on its degenerated intervertebral disc. Among them, curcumin can delay the degeneration of intervertebral disc by inhibiting inflammation, and the loading of MSN is helpful for curcumin to exert its biological effects.
ObjectiveThe antifriction and antiwear effects of gelatin nanoparticles (GLN-NP) on artificial joint materials in bionic joint lubricant were investigated to provide a theoretical basis for the development of new bionic joint lubricant. MethodsGLN-NP was prepared by cross-linking collagen acid (type A) gelatin with glutaraldehyde by acetone method, and the particle size and stability of GLN-NP were characterized. The biomimetic joint lubricants with different concentrations were prepared by mixing 5, 15, and 30 mg/mL GLN-NP with 15 and 30 mg/mL hyaluronic acid (HA), respectively. The friction reduction and antiwear effects of the biomimetic joint lubricants on zirconia ceramics were investigated on a tribometer. The cytotoxicity of each component of bionic joint lubricant on RAW264.7 mouse macrophages was evaluated by MTT assay. ResultsThe particle size of GLN-NP was about 139 nm, and the particle size distribution index was 0.17, showing a single peak, indicating that the particle size of GLN-NP was uniform. In complete culture medium, pH7.4 PBS, and deionized water at simulated body temperature, the particle size of GLN-NP did not change more than 10 nm with time, indicating that GLN-NP had good dispersion stability and did not aggregate. Compared with 15 mg/mL HA, 30 mg/mL HA, and normal saline, the friction coefficient, wear scar depth, width, and wear volume were significantly reduced by adding different concentrations of GLN-NP (P<0.05); there was no significant difference between different concentrations of GLN-NP (P>0.05). Biocompatibility test showed that the cell survival rate of GLN-NP, HA, and HA+GLN-NP solution decreased slightly with the increase of concentration, but the cell survival rate was more than 90%, and there was no significant difference between groups (P>0.05). ConclusionThe bionic joint fluid containing GLN-NP has good antifriction and antiwear effect. Among them, GLN-NP saline solution without HA has the best antifriction and antiwear effect.
Objective To assess the applied significance of carbon nanoparticles in central compartment lymph node dissection in treatment of cN0 papillary thyroid carcinoma. Methods Sixty-eight patients with cN0 papillary thyroid carcinoma who were treated in Tongji Hospital of Tongji Medical College from May. to Oct. in 2012 were randomly allocated to the control group (n=32) and the carbon nanoparticles trace group (tracer group, n=36), receiving non-carbon nanoparticles trace and carbon nanoparticles trace respectively. All patients were received total resection of thyroid plus the affected side and (or) contralateral side central compartment lymph node dissection. The lymph node-related indexes(including number of dissected lymph node at Ⅵarea and lymph node metastasis rate at Ⅵarea) and operative indexs (including operation time, blood loss, drainage time, complication, and hospital stay) were collected and compared between the 2 groups. Results There were 205 and 324 dissected lymph node at central compartment in control group and tracer group respectively. The results of postoperative pathology showed that the number of lymph node in central compartment of the tracer group was much more than those of control group (8.99±2.24 vs. 6.41±1.56, P<0.001). The metastasis rate of central compartment lymph node were 40.6% (13/32) in control group and 47.2% (17/36) in tracer group, but there was no significant difference between the 2 groups (P=0.762). But in medial area of laryngeal recurrent nerve, the metastasis rate in the tracer group (38.9%, 14/36) was much higher than those of control group (12.5%, 4/32), P=0.029. There were no significant differences in the operation time, blood loss, drainage time, hospital stay, and complication incidence such as bleeding, temporary hypocalcemia, and injury of superior laryngeal nerve between 2 groups (P>0.05). All the patients in 2 groups had followed-up for 6 months without death, recurrence, and metastasis.Conclusions The lymphatic tracer technique of carbon nanoparticles may improve the number of dissected lymph nodes in central region of cN0 papillary thyroid carcinoma, without increasing (or prolonging) operation time, intraoperative blood loss, and postoperative hospital stay, and can accurately represent the metastasis of lymph node, thus to make the staging of the tumor accurately and guide postoperative treatment.
In order to solve the problem of high cytotoxicity in vitro of nano-silver antibacterial gel, and the problem of large nano-silver particle size and size distribution, this study prepared nano-silver antibacterial gel with better biocompatibility and good antibacterial effect by using physical cross-linking method and using poloxamer as dispersant when prepared nano-silver. In this study, nano-silver was prepared by photo-initiator method and by adding poloxamer as a dispersant, and then UV-visible absorption spectrum test and scanning electron microscopy (SEM) test were carried out using prepared nano-silver mixture and particles after drying respectively. The gel was prepared through adjusting its pH value by using sodium bicarbonate, and then pH value test, SEM test for cross-section of gel, swelling ratio test, viscosity test, inhibition zone test and in vitro cytotoxicity test were carried out. The test results showed that the maximum absorption wavelength of prepared nano-silver, using poloxamer as dispersant and ultra-pure water as solvent, was 414 nm, and the average nano-silver size was about 60 nm. The prepared nano-silver using poloxamer as dispersant had smaller particle diameter and narrower particle size distribution than those using PVP as dispersant. Similarly, the prepared nano-silver using ultra-pure water as solvent also had smaller particle diameter and narrower particle size distribution than those using distilled water as solvent. The pH value of the prepared gel was between 5.8~6.1. The dried gel section had many holes. The water absorption of gel was fine and the viscosity of gel was fit to coat on the gauze. In addition, the prepared gel with nano-silver had greater ability to inhibit Escherichia coli and Staphyloccocus aureus at the concentrations of 24, 18 and 12 μg/mL. And the biocompatibility of the prepared gel with nano-silver was good when the concentration below 24 μg/mL. Based on the above features, the nano-silver antibacterial gel could be used in the treatment of burn or other wounds.