1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "stem cells" 511 results
        • APPLICATION OF ENHANCED GREEN FLUORESCENT PROTEIN LABELING TECHNOLOGY TO MONITO RING MARROW MESENCHYMAL STEM CELLS MIGRATION AFTER BONE FRACTURE

          Objective To monitor the stem cell migration into the bone defect following an injection of the labeled mesenchymal stem cells (MSCs) by the enha nced green fluorescent protein (EGFP)technology and to provide insights into an application of MSCs for the fracture healing. Methods Isolated MSCs from the rabbit femur marrow were culture-expanded and were labeled by the transfection with the recombinant retrovirus containing the EGFP gene. Then, some labeled MSCs were cultured under the osteogenic differentiation condition and the phenotype was examined. After the fracture of their bilateral ulna, 18 rabbits were divide d into two groups. The labeled MSCs were injected into the aural vein at 1×107 cells/kg in the experimental group and the unmarked MSCs were injected in the control group 24 hours before surgery, and 1 and 24 hours after surgery, res pectively. Necropsies were performed 2 days after surgery in the two groups. The sections from the left defects were observed under the fluorescence microscope and the others were analyzed by the bright-field microscopy after the HE staining. Results The EGFP did not affect the MSCs viability. After the labeled cells were incubated in the osteogenic medium alkaline phosphatase, the calcium nodule s were observed. All the rabbits survived. The tissue of haematoma was observed in the bone defects and the fluorescent cells were found in the experimental gr oup, but no fluorescent cells existed in the control group. Conclusion The EG FP labeled MSCs can undergo osteogenic differentiation in vitro and can mig rate into bone defects after their being injected into the peripheral vein.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • Advances of stem cell transplantation in the treatment of retinal degeneration

          Retinal degeneration mainly include age-related macular degeneration, retinitispigmentosa and Stargardt’s disease. Although its expression is slightly different, its pathogenesis is photoreceptor cells and/or retinal pigment epithelial (RPE) cel1 damage or degeneration. Because of the 1ack of self-repairing and renewal of retinal photoreceptor cells and RPE cells, cell replacement therapy is one of the most effective methods for treating such diseases.The stem cells currently used for the treatment of retinal degeneration include embryonicstem cells (ESC) and various adult stem cells, such as retinal stem cells (RSC), induced pluripotent stem cells (iPSC). and mesenchyma1 stem cells (MSC). Understanding the currentbasic and clinical application progress of ESC, iPSC, RSC, MSC can provide a new idea for the treatment of retinal degeneration.

          Release date:2018-11-16 03:02 Export PDF Favorites Scan
        • IN VITRO DIFFERENTIATION OF RAT MESENCHYMAL STEM CELLS INTO SKELETAL MUSCLE CELLS INDUCED BY MYOBLAST DIFFERENTIATION FACTOR AND 5-AZACYTIDINE

          Objective To explore the in vitrodifferentiation of the rat mesenchymal stem cells (MSCs ) into the skeletal muscle cells induced by the myoblast differentiation factor (MyoD) and 5-azacytidine. Methods The MSCs were taken from the rat bone marrow and the suspension of MSCs was made and cultured in the homeothermia incubator which contained 5% CO2at 37℃. The cells were observed under the inverted phase contrast microscope daily. The cells spreading all the bottom of the culture bottle were defined as onepassage. The differentiation of the 3rd passage of MSCs was induced by the combination of 5-azacytidine, MyoD, transforming growth factor β1, and the insulin like growth factor 1. Nine days after the induction, the induced MSCs were collected, which were analyzed with the MTT chromatometry, theflow cytometry, and the immunohistochemistry. Results The primarily cultured MSCs grew as a colony on the walls of the culture bottle; after the culture for 5-7 days, the cells were shaped like the fibroblasts, the big flat polygonal cells, the medium sized polygonal cells, and the small triangle cells; after the culture for 12 days, the cells were found to be fused, spreadingall over the bottle bottom, but MSCs were unchanged too much in shape. After the induction by 5-azacytidine, some of the cells died, and the cells grew slowly. However, after the culture for 7 days, the cells grew remarkably, the cell volume increased gradually in a form of ellipse, fusiform or irregularity. After theculture for 14 days, the proliferated fusiform cells began to increase in a great amount. After the culture for 18-22 days, the myotubes increased in number and volume, with the nucleus increased in number, and the newly formed myotubes and the fusiform myoblst grew parallelly and separately. The immunohistochemistry for MSCs revealed that CD44 was positive in reaction, with the cytoplasm ina form of brown granules. And the nucleus had an obvious border,and CD34 was negative. The induced MSCs were found to be positive for desmin and specific myoglobulin of the skeletal muscle. The flow cytometry showed that most of the MSCs and the induced MSCs were in the stages of G0/G1,accounting for 79.4% and 62.9%,respectively; however, the cells in the stages of G2/S accounted for 20.6% and 36.1%. The growth curve was drawn based on MTT,which showed that MSCs weregreater in the growth speed than the induced MSCs. The two kinds of cells did not reach the platform stage,having a tendency to continuously proliferate.ConclusionIn vitro,the rat MSCs can be differentiated into the skeletal muscle cells with an induction by MyoD and 5-azacytidine, with a positive reaction for the desmin and the myoglobulin of the skeletal muscle. After the induction, the proliferation stage of MSCs can be increased, with a higher degree of the differentiation into the skeletal muscle.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • Therapeutic Progress of Congestive Heart Failure Treated with Mesenchymal Stem Cells

          Congestive heart failure is a complication of myocardial infarction threatening human health. Although the pharmacotherapy is effective, it is still a worldwide challenge to thoroughly repair the injured myocardium induced by myocardial infarction. It has been demonstrated that mesenchymal stem cells (MSCs) can repair infarcted myocardium. Much evidence shows that MSCs can generate new myocardial cells in both human and animals' hearts. This review aims at discussing the therapeutic progress of the congestive heart failure treated with MSCs.

          Release date:2016-11-04 06:36 Export PDF Favorites Scan
        • POTENTIAL SEEDING CELLS FOR CARTILAGE TISSUE ENGINEERING——BONE MARROW STROMAL STEM CELLS

          OBJECTIVE To review the recent research progress of bone-marrow stromal stem cells (BMSCs) in the conditions of culture in vitro, chondrogenic differentiation, and the application in cartilage tissue engineering. METHODS: Recent original articles related to such aspects of BMSCs were reviewed extensively. RESULTS: BMSCs are easy to be isolated and cultivated. In the process of chondrogenesis of BMSCs, the special factors and interaction between cells are investigated extensively. BMSCs have been identified to form cartilage in vivo. One theory is the committed chondrocyte from BMSCs is only a transient stage. CONCLUSION: BMSCs are the alternative seeding cells for cartilage tissue engineering. The conditions promoting mature chondrocyte should be further investigated.

          Release date: Export PDF Favorites Scan
        • Effects of nicotinamide mononucleotide adenylyl transferase 3 on mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells via regulating nicotinamide adenine dinucleotide levels

          ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.

          Release date:2020-06-15 02:43 Export PDF Favorites Scan
        • METHOD AND CONDITIONS OF ISOLATION AND PROLIFERATION OF MULTIPOTENT MESENCHYMAL STEM CELLS

          Objective To investigate the method and conditions of isolation,proliferation of multipotent mesenchymal stem cells(MSCs)from human umbilical cord blood in vitro, and to induce osteogenic and adipogenic differentiation directly for identification. Methods Human umbilical cord blood was collected in asepsis condition, isolated by density gradient centrifugation,or sedimented red cell with methylcellulose, and then the same centrifugation was done, or obtained by negative immunodepletion of CD34+. These isolated mononuclear cells were used to carry on plastic adherent culture. To obtain single cellderived colonies, these cells were proliferated clonally in medium which consists of L-DMEM orMesencultTM medium and 10% fetal calf serum(FCS) respectively, then their differentiation potentiality to osteoblasts and lipoblasts was tested. Results The mononuclear cells isolated by sedimented and centrifugated way cultured in MesencultTM medium and 10%FCS were most available. These adhesive cells could become obviously short rodshape or shuttle-shape cells after 5-7 days.The colonies form well in 3rdpassage cells. The mononuclear cells obtained by onlycentrifugalized in density gradient were hard to form colony, isolated by immunomagnetic beads were hard to culture. The surface antigens of these colonies cells presented CD29, CD59, CD71 but not CD34,CD45 and HLADR etc. The colony cells differentiating into osteoblasts that produce mineralized matrices, stained by alizarin red, and differentiating into adipocytes that accumulate lipid vacuoles, stained by oil red. Conclusion MSCs can be isolated from human umbilical cord blood and proliferate it in vitro. The way that mononuclear cells are sedimented red cell by methylcellulose and cultured by MesencultTM medium and 10% FCS is the valid method of isolation. Proliferation colonies cells present matrix cell immunophenotypes, and candifferentiate into osteoblasts and adipocytes.

          Release date:2016-09-01 09:19 Export PDF Favorites Scan
        • EFFECTS OF CORE BINDING FACTOR α1 ON PROMOTION OF OSTEOBLASTIC DIFFERENTIATION FROM MARROW MESENCHYMAL STEM CELLS

          Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • Progress in research on urinary stem cells

          Urine-derived stem cells are a kind of cells with strong proliferative ability and multi-directional differentiation characteristics of mesenchymal stem cells isolated from urine. Urine-derived stem cells are derived from the kidney and express mesenchymal stem cell-specific antigens; experimental studies have shown that they can differentiate into a variety of cells such as adipocytes, chondrocytes, bone cells, nerve cells, etc., and have the function of promoting tissue repair. A review of the research progress of urinary stem cells is now available.

          Release date:2018-08-20 02:24 Export PDF Favorites Scan
        • EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS ENRICHED BY SMALL INTESTINAL SUBMUCOSAL FILMS ON CARDIAC FUNCTION AND COMPENSATORY CIRCULATION AFTER MYOCARCADIAL INFARCTION IN GOATS

          Objective To investigate effects of the autologous bone mesenchymal stem cells (MSCs) enriched by the small intestinal submucosa (SIS) film implantation on the myocardial structure, cardiac function, and compensator y circulation after myocardial infarction in the goats. Methods Sixteen black goats were selected and divided randomly into the control group (n=8)and the experimental group (n=8). The chronic myocardial infarction models were made by the ligation of the far end of the left anterior desc ending coronary artery. At the same time, MSCs were aspired from the thigh bone of the goats in the experimental group. MSCs were isolated by the centrifu gation through a percoll step gradient and purified by the plating culture and depletion of the non-adherent cells. Primary MSCs were cultured in the DMEM me dium supplemented with the fetal bovine serum in vitro. After that, the cultures were labeled by 5- BrdU. The active cells were transplanted into the SIS film. Six weeks after the ligation, the MSCs-SIS film was implanted by its being sutured onto the infarction area; whereas, the control group underwent a shamoperation. In both groups, echocardiographic measurements were performed before infarction, 6 weeks after infarction and 6 weeks after the MSC-collagen mplantion, respectively, to assess the myocardial structure and ca rdiac function. The left coronary artery angiography was performed with the digi tal subtraction angiography. Results In an assessment of the left ventricular function, at 6 weeks after operation, t he stroke volume and the ejection fraction of the control group and the experim ental group were 42.81±4.91, 37.06±4.75 ml and 59.20%±5.41%, 44.56%±4.23%, respectively (Plt;0.05). The enddisatolic volume and the endsystolic volume of the control group and the experimental group were 72.55±8.13, 83.31±8.61 ml and 29.75±5.98, 46.25±6.68 ml, respectively (Plt;0.05). The maximal velocity of peak E of contral group and experimental group were 54.8 5±6.35 cm/s and 43.14±4.81cm/s (Plt;0.01); and the maximal velocity of peak A o f control group and experimental grouop were 52.33±6.65 cm/s and 56.91±6.34 cm/s (Pgt;0.05). Echocowdiogr aphy sho wing a distinctly dilatation of left ventricle with the ventricular dyskinesia i n contral group, but without the ventricular dyskinesia in experimental group. T he selective-coronary evngiography revealed that the obvious compensatory circu l ation established between the anterior descending branch and the left circumflex branch in the experimental group. Conclusion Implantation of the autologus MSCs enriched by the SIS film can prevent dilatation of the left ventricular chamber and can improve the contractile ability of the myocardium, cardiac function, and collateral perfusion.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        52 pages Previous 1 2 3 ... 52 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品